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ABSTRACT

Traditional evolutionary algorithms (EAs) are powerful robust problem solvers

that have several fixed parameters which require prior specification. Having to deter-

mine good values for any of these parameters can be problematic, as the performance

of EAs is generally very sensitive to these parameters, requiring expert knowledge to

set optimally without extensive use of trial and error. Parameter control is a promis-

ing approach to achieving this automation and has the added potential of increasing

EA performance based on both theoretical and empirical evidence that the optimal

values of EA strategy parameters change during the course of executing an evolu-

tionary run. While many methods of parameter control have been published that

focus on removing the population size parameter (µ), most of these methods have

undesirable side effects for doing so.

This thesis starts by providing evidence for the benefits of making µ a dynamic

parameter and then introduces two novel methods for removing the need to preset

µ. These methods are then compared, explaining the strengths and weaknesses of

each. The benefit of employing a dynamic value for µ is demonstrated on two test

problems through the use of a meta-EA, and the first novel method is shown to be

useful on several binary test problems while the second performs well on a real valued

test problem.

A condensed version of this thesis has been accepted for publication in the

proceedings of the Genetic and Evolutionary Computation Conference 2010 [7].
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1. INTRODUCTION

1.1. MOTIVATION

Modern society increasingly is faced with complex computational problems for

which evolutionary algorithms (EAs) are appropriate solvers. However, practitioners

in the field often lack the necessary expertise to properly configure EAs, leading to

dismal results. This may lead to the practitioner disavowing the use of EAs for

future problem solving, even when EAs would have been the best choice of solution

method. Automating the configuration of EA strategy parameters (further referred

to as parameters) is one approach for making EAs more usable by practitioners.

Parameter control is a promising approach to achieving this automation and has the

added potential of increasing EA performance based on both theoretical and empirical

evidence that the optimal values of EA strategy parameters change during the course

of executing an evolutionary run [9, page 131]. While parameter control does not

entirely remove the need to configure parameters, it tends to make the behavior of an

EA significantly less sensitive to the initial parameter settings than an EA with fixed

parameter values [9, page 133]. The overhead caused by the need to converge to the

optimal parameter values may be expected to be more than compensated by the huge

savings obtained by minimizing the required amount of computationally expensive

parameter tuning that is required. A drawback of many published parameter control

approaches is the “stealth” introduction of new, control-related parameters; in some

cases, these stealth parameters even end up determining the convergence values for

the parameters being controlled, which is counterproductive [20].

A considerable body of work exists on parameter control, most of it focused on

controlling mutation step size and, to a lesser extent, recombination and population

size (µ). The latter has inspired several intriguing approaches, but all hampered by

a variety of problems ranging from the introduction of stealth parameters to wasting

evaluations on parallel populations. This thesis provides additional evidence that

population size control can be beneficial to EA performance on important benchmark

problems and introduces two novel approaches for population size control that avoid
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some of the drawbacks of previously published methods. Both approaches have in

common that they do not control population size directly, but rather make it a derived

measure by employing non-traditional survival selection methods. The first method

assigns each individual a survival chance proportional to its fitness, while the second

method only removes individuals upon exhausting all available memory.

1.2. EVOLUTIONARY ALGORITHMS

An EA is a population-based optimization algorithm that uses artificial evolu-

tion to produce solutions to problems for varying difficulty, examples of which are

provided in Figure 1.1 and Figure 1.2. It has three inputs: a fitness function, a rep-

resentation, and a set of strategy parameters. The representation specifies the form

of a candidate solution for the problem to be optimized. Commonly used examples

of representations are bit strings, real valued vectors and trees. The fitness function

maps each representation to a metric that determines how well that representation

solves the problem. The final input, the set of parameters, controls how the EA

will perform by managing how the various EA operators behave. These parameters

include the population size, the offspring size and the mutation rate, among others.

Internally, an EA follows a fairly straight forward procedure, displayed in Fig-

ure 1.3. The first step is the creation of an initial population comprised of individuals

encoding candidate solutions. Initialization can be performed in a variety of ways,

including randomly, with a user defined heuristic, with results seeded from a previ-

ous run, or any combination of these or other methods. Each of these individuals is

then evaluated and assigned a fitness value, indicating the quality of its particular

solution. At this point, the evolutionary cycle begins. The first step in the evolu-

tionary cycle is to select parents that will produce offspring. These parents can be

selected in many ways, either randomly or by introducing some form of bias towards

picking fitter individuals. After parents are selected, an offspring is created by using

recombination. This results in an offspring that has some of the information con-

tained in each parent participating in the offspring’s creation. After being generated,

the offspring undergoes mutation, modifying its genes slightly, altering the solution

that it represents. This modification can vary significantly in severity, and might not

even happen at all for a given offspring. Mutation exists to introduce new genetic
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Figure 1.1. An example of a well-behaved search space.

material and maintain some level of diversity in the population, as without it, genes

needed to produce a particularly good solution might disappear from the population

entirely, assuming they were ever present to begin with. The offspring are evaluated

and assigned a fitness value, just as the initial population was. The final step in

the evolutionary cycle is to select survivors. These survivors will continue to exist in

the algorithm and possibly generate more offspring for at least another generation.

There are many different ways to select survivors, most of which are biased towards

selecting stronger individuals to survive. The survivors that are selected repeat the

evolutionary cycle, creating offspring and selecting survivors until some termination

criteria is met. This criteria can be based on a variety of things such as the number

of fitness evaluations used, the amount of time that has passed, or the quality of
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Figure 1.2. An example of an ill-behaved search space.

Figure 1.3. The evolutionary cycle.
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the best available solution. Once this criteria is met, the individual with the highest

fitness value ever found produces the EA’s output in the form of its encoded solution,

representing the best solution that was discovered.

1.3. OVERVIEW

The art of parameter control is still fairly undeveloped. While a considerable

amount of work has been published, most of this work focuses on a small subset of

parameters. Most commonly examined are the mutation step size, recombination, the

parent selection methods, and µ. While a considerable amount of work has been done

exploring parameter control of µ, many of these methods introduce new problems in

exchange for the benefits that they create.

The purpose of this research is first to explore the benefit of a variable µ, then,

provided that varying µ proves to be beneficial, to examine a pair of novel ideas

on how to control µ. Both of these methods control µ by altering the way survivor

selection is handled. The first method replaces survivor selection with an individual

survival chance, allowing the population to fluctuate based on how many individuals

survive from one generation to the next. The second method is based on the idea

that individuals should not be unnecessarily removed from the population: removing

any chance of an individual failing to survive until the system can no longer support

more individuals because the memory allotted to the EA is full.
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2. RELATED WORK

2.1. PARAMETER CONTROL

Parameter control is any method in which parameters of an EA are varied during

a single run of the EA. This can take many forms, as there are countless methods in

which one can vary any parameter during a run. In most published work, only a few of

the possible parameters have been extensively examined, as mentioned in Section 1.3.

Table 2.1 contains a brief summary of pertinent works that examine methods of

parameter control. As shown in Table 2.1, most of these examine controlling the

mutation rate, but some explore controlling other parameters such as the number of

offspring produced (λ), selection methods, and µ.

The two most common types of parameter control are adaptive and self-adaptive

parameter control. Adaptive parameter control involves changing the value of a strat-

Table 2.1. Brief summary of prior work examining parameter control and behavior.
Year Parameter(s) Type of Results Source

1991 Reproduction Theoretical and Empirical [24]
1991 Mutation Rate Empirical [12]
1992 Mutation Rate Empirical [2]
1992 Mutation Rate Theoretical and Empirical [3]
1993 Mutation Rate Empirical [4]
1994 µ Empirical [1]
1996 Recombination Strategy Empirical [13]
1996 Mutation Rate Empirical [14]
1998 Mutation Rate, Crossover Rate Theoretical and Empirical [23]
1999 µ Empirical [10]
2000 Mutation Rate, Crossover Rate, µ Empirical [5]
2001 Mutation Rate Theoretical and Empirical [19]
2006 Selection Pressure, µ Empirical [8]
2007 µ Empirical [20]
2007 Parent Selection Empirical [21]
2008 Parent Selection, µ Empirical [11]
2009 λ Empirical [18]
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egy parameter based upon feedback from the search. A classic example of adaptive

parameter control would be Rechenberg’s 1/5 success rule, which is used for control-

ling the mutation step size [9, page 72]. This rule states that about one in every

five mutations should be successful, i.e., result in an offspring with a higher fitness

value than its parents. If fewer mutations are successful, the mutation step size, the

amount that mutation can change an individual, is reduced to focus the search near

the current solutions. If more mutations are successful, the mutation step size is

increased to broaden the area that mutation can reach, allowing for more exploration

of the search space. In [4], an example of adaptive behavior is provided, in which the

mutation rate is controlled with a predetermined mutation rate schedule based upon

its success rate when optimizing a particular fitness function.

Self-adaptive parameter control involves coding additional information into each

individual genotype. This information is then used to change how the EA behaves

with regards to this individual, often in the form of changing various parameters.

These encoded parameters are subject to mutation and recombination, as is the rest

of the representation. This idea is based on the theory that high-quality individuals

come from high-quality environments. By this reasoning, the individuals that evolve

a high-quality set of additional parameters will have better solutions than those that

evolve a poor set of parameters. This will generally cause the poorer sets of parameters

to disappear from the population, ideally only leaving behind very high-quality sets

of encoded parameters. Examples of self-adaptive behavior are very plentiful. In

[2], basic self-adaptation of the mutation rate is explored, and [3] expands further on

this idea, developing a near-optimal schedule for the mutation rate. The effects of

self-adaptation in a steady-state genetic algorithm are throughly examined in [14].

In [23], the effects of self-adaptation on both the mutation rate and the crossover

rate are investigated, and [13] introduces self-adaptive recombination by allowing the

individuals to create groups of genes that are treated as a single gene for the purposes

of recombination.

Some methods exist that combine aspects of both adaptive and self-adaptive

parameter control. An example of one of the more common methods for doing so is

a voting scheme [8]. In such algorithms, each individual is encoded with a vote. At

predetermined intervals, a vote between all of the living individuals in the population
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occurs, allowing each individual to influence the behavior of the EA, until the next

vote occurs.

2.2. PRIOR WORK ON POPULATION SIZING IN EAS

One of the first attempts to control population size resulted in the Genetic

Algorithm with Varying Population Size (GAVaPS) [1]. This was accomplished by

removing the population size parameter entirely and introducing an individual sur-

vival chance based on age, thus causing population size to become a derived measure.

A similar approach is also used to create the Genetic Algorithm with Adaptative

Population Size (APGA) [5]; however, APGA does not age the fittest individual in

the population, giving it a better chance for survival. This is the inspiration for the

two novel approaches introduced in this thesis which also remove the population size

parameter entirely and employ an individual survival chance, though not based on

age. While GAVaPS and APGA both remove population size as a parameter, they

also both introduce two new stealth parameters, MinLT and MaxLT, representing

the minimum and maximum number of generations that any individual can survive.

Furthermore, it has been shown that this approach does not actually remove the

population size, as it simply causes the population size to converge on a fixed value

determined by the two stealth parameters [16, 20].

A completely different approach was taken in the Parameter-less GA [10, 16]

and GPS-EA [20, 11] which attempt to converge on the optimal population size by

generating increasingly larger populations in parallel until no improvement in the

fitness is found in the largest population. The main difference is that the Parameter-

less GA has no bound on the total number of parallel populations, while the GPS-EA

has exactly two parallel populations at all times. While this approach avoids the

pitfall of implicitly specifying the population size through the values of the stealth

parameters, it does have its own drawbacks. One major drawback is the lack of

population size control during the evolution of a particular population, as various re-

searchers have indicated that different population sizes are optimal at different stages

of evolution [5, 8]. A second major drawback is that because new populations are

initialized randomly, most of the fitness evaluations are used by populations that are

discarded during execution and do not contribute to finding the final solution, except
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for determining the optimal population size. An attempt to reuse fitness evaluations

from smaller populations by seeding new larger populations resulted in poor perfor-

mance [11, Section 3.4]. The novel approaches introduced in this thesis employ a

single population, thus avoiding the overhead of multiple parallel populations, and

can adapt the population size during the entire evolutionary run.

Another approach was taken in GASAP [8] which employs a self-adaptive method

for population size control via a voting system. Each individual in the population

has a gene encoding its vote on population size; the population size is determined by

tallying the votes of all the individuals. However, stealth parameters were introduced

for specifying the lower- and upper bounds of the vote values, and the sensitivity of

EA performance to these bounds was not reported.

Many competitive EAs use either multiple populations evolving in parallel, such

as the Parameter-less GA [10] and the GPS-EA [20]. Both of these are effective

techniques for finding higher-quality solutions, as they minimize the impact of one

population converging to a sub-optimal local optima, since others may avoid it. Some

work has also been done on reinitializing a portion of the population at several points

throughout a run [22]. While this can be effective for maintaining genetic diversity,

most of the new individuals are unlikely to survive for many generations as the fitness

values for individuals already in the population are typically higher than for new,

randomly generated individuals.
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3. EMPIRICAL EVIDENCE OF POPULATION CONTROL BENEFITS

3.1. METHODOLOGY

While some researchers have indicated that the optimal population size varies

during evolution [5, 8], there is a lack of published evidence. In this section a sys-

tematic approach to gathering such evidence is described and some initial results are

presented.

The approach employs a meta-EA to simultaneously evolve the optimal sequence

of population size values for each generation of an EA. Note that we are not advocating

this as a practical approach for population size control, just as a way to determine

whether different population size values are optimal at different evolutionary stages.

Every benchmark problem for which we can find an EA configuration that causes the

sequence found by the meta-EA to consist of values that differ, adds evidence that

the optimal population size can vary during evolution. Note that an EA employing

optimal population size control will be at least as good as the exact same EA without

population size control as the one with population control can mimic the one without

population control, effectively setting the population size to a fixed value, but not the

other way around.

To test this idea accurately, first a manually tuned Traditional EA (TEA) was

created. The parameters that were found to be ideal for this manually tuned EA were

then used as fixed parameters for the EA that the meta-EA will evolve. The solution

provided by the meta-EA should be a set of population sizes, µ0 through µn where n

is the number of generations, that will produce a high-quality solution. The results

from TEA are then compared to the results obtained from the EA produced by the

meta-EA.

Ideally, the results obtained from this experiment will show several things. The

first is that the population size will differ significantly from generation to generation.

Also, hopefully this dynamic µ will result in an increase in performance over the

traditionally tuned EA. Provided that the values of µ0 through µn are different and

some improvement is made, the usefulness of a dynamic µ is apparent. Additionally,
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this test could reveal patterns in the values of µ. If patterns in the population size

are found, determining an optimal method for controlling the population size could

be made easier.

3.2. EXPERIMENTAL DESIGN

3.2.1. Test Problems. For this particular experiment two test problems

were selected. The Spears’ Multimodal Problem (SMP) was chosen because it is

a multimodal problem in which the difficulty is easily controlled [15]. The SMP

generator creates a specified number of bit strings that represent different peaks

present in the landscape. Each of these peaks is then assigned a value. The fitness of

individual i that represents a bit string of length l is defined as:

f(i) =
l −D(i, Peakn(i))

l
· height(Peakn(i)) (1)

Because the difficulty of the problem can be altered easily by changing the number of

peaks, this particular problem is very useful for gauging how well an algorithm can

perform on increasingly difficult problems. As such, this experiment will be repeated

using different numbers of peaks, as described in the next section.

The second test was performed on the bounded D-TRAP problem [6]. Essen-

tially, the problem consists of a bit string broken up into 4-bit substrings called traps.

The fitness for each trap is defined as:

f(u) =

3− u if u ≤ 3

4 otherwise
(2)

where u is the number of zeros in the trap. The resulting fitness for a given solution

is the sum of the fitness values for every 4-bit trap. For these experiments, a solution

is comprised of 100, 250 or 500 traps.

3.2.2. Dynamic Population Concept Testing. To test the usefulness

of a dynamic population, a set of various experiments was created. A meta-EA is

executed on three instances of the Spears’ Multimodal Problem, one with 10 peaks,

the second with 50 peaks and the third with 100 peaks. All of the parameters for

the meta-EA are fixed, except for the population size, which will be represented by



www.manaraa.com

12

a string of 100 numbers. Each of these numbers will correspond to the value of µ

desired at each generation. If at each generation µ changes significantly, then the

usefulness of a dynamic population is demonstrated. The fixed parameters used by

the meta-EA and the EA are shown in Table 3.1. For this particular experiment,

the population values that the meta-EA is capable of finding are restricted to not

increasing by more than λ at a time. This is done to allow λ to remain fixed.

The results from this experiment are compared against a traditionally tuned

EA with a fixed population size, or TEA. Both will be limited to 100 generations,

rather than by the number of fitness values used, to properly examine the benefits of

allowing µ to change over those 100 generations. TEA was tuned by first testing all

combinations of µ and λ at values of 50 through 500, at increments of 50. After the

best values for µ and λ were found, various combinations of parent selection operators

and survival selection operators were tested, with the set producing the best results

being used. These values are shown in Table 3.2.

Table 3.1. Fixed parameters used by the meta-EA and the EA that is produced by
the meta-EA.

Algorithm Meta-EA EA

µ 10 —
λ 10 50
Parent Selection Tournament Size 2 5% of µ
Crossover Uniform Random
Mutation Rate 1/100 1/l
Survivor Selection Elitist Binary Tournament
Termination Condition 200 Fitness Evaluations 100 Generations
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Table 3.2. Fixed parameters used by TEA.
Problem SMP D-TRAP

µ 450 400
λ 500 100
Parent Selection 10% of µ 5% of µ
Tournament Size
Crossover Uniform Random
Mutation Rate 1/l
Survivor Truncation Elitist Binary
Selection Tournament
Termination 100 Generations

3.3. RESULTS

The main purpose behind using this meta-EA was to examine what was consid-

ered to be an optimal set of population sizes for an EA. As can be seen in the standard

deviation in Figure 3.1 and in Table 3.3, the population size fluctuates wildly at nearly

every generation. While this may be caused in part by a lack of sensitivity at various

times during the execution of the algorithm, the drastic variation shown in Figure 3.1

as well as the higher, more efficiently obtained results observed for the EA produced

by the meta-EA in Table 3.3 indicate that these changes are significant, and that

an optimal population should not remain fixed throughout the evolution on at least

some problems.

3.4. DISCUSSION

The results shown in Section 3.3 are expected, given a few known aspects about

how a population behaves. While a small population can converge on a solution more

rapidly than a large population, a larger population tends to produce a higher quality

solution. In this manner, a larger population can be associated with increased explo-

ration, while a smaller population exhibits more exploitation. Knowing this, it makes

sense that at times a larger population would be used to improve the final solution
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Figure 3.1. Optimal population sizes found by a meta-EA for the SMP and D-TRAP
test problems.

Table 3.3. Comparison of meta-EA and TEA results.
Algorithm EA from meta-EA TEA
Problem SMP D-TRAP SMP D-TRAP
Problem Size 100 Peaks 100 Traps 100 Peaks 100 Traps
Average µ 52.37 59.82 450 400
SD of µ 60.20 45.80 0 0
Fitness Reached 100% 81.5% 99.7% 80.8%
Fitness Evaluations Required 5500 5300 50400 10400

quality by exploring more possibilities, and at other times a smaller population would

be used to exploit the information that the larger population has found.

Figure 3.1 sheds a little more insight into what makes a good population, as

both tests show one distinctive common trait: the population is very high during
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the first generation, then drops off rapidly in the next few generations, followed by

oscillating values. This shows that a high initial population size may be very useful,

making effective use of an initial random search that is done during the population

initialization. This idea is further explored in Section 4.1, as it is a large portion

of the inspiration for the Fitness Scaled Individual Survival EA (FiScIS-EA). The

oscillating values that follow the initial decrease in population size are likely caused

by insensitivity in µ at that point in the evolution, especially if the EA has already

converged to a solution.
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4. DYNAMIC POPULATION METHODS EXPLORATION

4.1. METHODOLOGY

4.1.1. FiScIS-EA. Fitness-Scaled Individual Survival (FiScIS) EA, replaces

traditional survivor selection with an individual-based survival method. Essentially,

the idea is to assign each individual a chance to survive at the end of each genera-

tion, and allow those chances to determine who survives to the next generation, thus

making population size a derived measure.

The exact method for determining the chance for an individual to survive is

similar to the idea of linear scaling. At each generation, each individual is assigned

a chance to survive to the next generation based on the individuals’ fitness when

compared to the currently existing best and worst fitness values in the population,

namely:

Psur(i) =
f(i)−MinFit

MaxFit−MinFit
(3)

where Psur(i) is the chance that individual i survives to the next generation, f(i) is

the fitness of i, and MaxFit and MinFit are the highest and lowest fitness values

present at the beginning of each generation. This equation is used unless MinFit =

MaxFit, in which case ∀i, Psur(i) = 1 to prevent division by 0. This also prevents

the population from going extinct, as this is only possible if ∀i, Psur(i) = 0, (i.e.,

MinFit = MaxFit). This method ensures several things. First, the best solution

will always survive, as Psur(arg maxi f(i)) = 1. Also, the worst solution will never

survive because Psur(arg mini f(i)) = 0. Other solutions randomly survive based upon

their quality when compared to the maximum and the minimum.

This formula also encourages population growth to explore an area when the

population begins to converge, while keeping the population size smaller while rapid

growth of the fitness is still attainable. This occurs because when the population’s

fitness is rapidly increasing, many weaker individuals die due to the difference in

fitness, but when growth slows down the differences created at each generation are

no longer as large, allowing many more individuals to survive. Also, this method
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allows for a large initial population, but since the large initial population is unlikely

to remain large, it still allows for rapid improvement. This effectively combines the

advantages of both a large population’s exploratory power and a small population’s

convergence speed. It should be noted that this method still requires the input of an

initial value for the size of the population. Because of this, the standard population

parameter (µ) has actually just been replaced with an initial population parameter

(µ0). While this does not reduce the number of parameters, it still allows for changes

in the population in the middle of a single run, causing the initial choice of µ to have

less of an impact.

While functional, as shown in Section 4.3, this method is generally incapable of

making use of a large number of fitness evaluations, unlike other powerful population

sizing EAs, such as the Parameter-less GA [10]. This can be rectified by allowing

the algorithm to reinitialize the population if convergence is detected, essentially

restarting the entire EA. Restarting the EA when convergence is detected allows

FiScIS-EA to effectively compete with other algorithms that use multiple populations

to achieve quality results. FiScIS-EA also has the added benefit over algorithms like

the Parameter-less GA of only running one instance of the EA at a time.

4.1.2. GC-EA. The Growth Curve EA (GC-EA) is based on the idea that

individuals in the population should never be discarded. Since discarding any in-

dividual from the population almost always removes some of the genetic diversity,

maintaining every individual could be a very effective method for preventing pre-

mature convergence. Using this method, µ0 is set at the beginning, and at every

generation µ is increased by λ.

µn+1 = µn + λ (4)

This behavior is maintained until the population has expanded to fill all of the avail-

able memory that it is allowed to occupy. Once all of the memory has been filled,

classic survivor selection methods are used to allow evolution to continue. While

potentially effective, this method has one major problem: it places all of the selective

pressure upon the parent selection operator. This effectively assumes that the parent

selection operator is powerful enough to pick good individuals while not removing any
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chance for weaker individuals to be selected, regardless of how large the population

grows.

GC-EA differs from FiScIS-EA in several key areas. Unlike FiScIS-EA, it follows

a user defined pattern for the values of µ, even though this pattern is determined

completely by parameters that are already supplied. This creates additional pressure

on picking a successful λ and µ0, as together, they will determine how the population

size will change during every generation.

GC-EA has several obvious downsides, most notably is the dependency on a

very strong parent selection operator. After a few generations, assuming µ0 is not

significantly larger than λ, the size of the population will have grown considerably.

The ability to handle populations of all sizes well is very difficult to find in most

parent selection operators, and since this method has a constantly increasing µ, this

is a major concern.

Much like FiScIS-EA, this method is generally not capable of usefully consuming

very large numbers of fitness evaluations. As such, it will also be compared with other

methods when allowed to restart if convergence is detected, in the same manner as

FiScIS-EA.

4.2. EXPERIMENTAL DESIGN

4.2.1. Test Problem Suite. To test these concepts, five different sets of

experiments were conducted. All of these sets of experiments consist of comparing

TEA with GC-EA and FiScIS-EA, as explained in Section 4.1. These tests are run

on several different values of µ and µ0, as well as several different sizes of each of the

problems.

The first problem, ONEMAX, was chosen for its simplicity. This function counts

the number of bits in a bit string that are set to one, and returns that as its fitness

value. This problem is being used to test the basic functionality of each EA.

The second problem, the Spears’ Multimodal Problem (SMP), is defined in

Section 3.2.1. This problem was chosen to demonstrate the performance of these two

algorithms on a multimodal problem. The third test was performed on the bounded

D-TRAP problem defined in Section 3.2.1. The D-TRAP problem is being used here

for its deceptive nature, making it a very difficult problem to solve.
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The fourth test was performed on the 3-SAT problem. The 3-SAT problem is a

boolean satisfiability problem comprised of a series of clauses in conjunctive normal

form, each containing three variables. These clauses are randomly generated at the

beginning of each run of the experiment. The fitness value returned by the fitness

function is the number of clauses made true by a given set of true and false values.

For these experiments, the number of variables is held constant at 100, while the

number of clauses is changed to alter the difficulty of the problem.

The final test problem is the minimization of the Rastrigin Function. This is a

highly multimodal real valued problem, defined by the function:

f(i) = 10n+
n∑

i=0

(x2
i − 10cos(2πxi)) (5)

This particular problem was chosen for a few main reasons. Since it is a real-valued

problem, unlike the other four test problems, it provides a significantly different prob-

lem type for comparing these algorithms. Also, because it is a real-valued problem,

it is more easily related to a real-world problem. Because of the real-valued nature of

this problem, different operators for recombination and mutation need to be used. Re-

combination will be accomplished by averaging the values of the two selected parents,

while mutation will be handled by applying Gaussian mutation.

4.2.2. Dynamic Population Method Testing. Extensive testing was done

to determine what strategy parameters to use for these experiments. µ, µ0 and λ

were independently optimized in the order listed for values ranging from 50 to 500.

Parent selection was performed using uniform random selection, a binary tournament,

a tournament containing five percent of the population, and a tournament containing

ten percent of the population. Survivor selection was handled by truncation, binary

tournament or an elitist binary tournament for TEA. All combinations of these were

tested thoroughly before deciding on the parameters to use for TEA, FiScIS-EA and

GC-EA. Values that were held constant throughout all of the experiments are shown

in Table 4.1. The final values for the varied parameters are shown in Table 4.2.

The four binary test problems use the same operators for mutation and crossover.

The crossover operator randomly picks from which of the two parents each bit comes,

and the mutation operator checks every bit and flips the bit if mutation occurs. The
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Table 4.1. Fixed parameters used in all experiments.
Parameter Value

Mutation Rate 1/l
Real-Valued Mutation N(0, 1)
Binary Recombination Uniform Random
Real-Valued Recombination Whole Arithmetic
Alpha .5
Standard Deviation for .5
Real Valued Mutation
Termination 100000
(Maximum Fitness Evaluations)

Table 4.2. Dynamically tuned parameters used in all experiments.
Problem ONEMAX SMP D-TRAP 3-SAT Rastrigin

Algorithm TEA
µ 100 450 400 400 100
λ 100 500 100 300 100
Parent 10% of µ 10% of µ 5% of µ 5% of µ 5% of µ
Selection
Tournament
Size
Survivor Truncation Truncation Elite Binary Truncation Elite Binary
Selection Tournament Tournament

Algorithm FiScIS-EA
µ0 200 250 100 350 350
λ 100 500 250 400 300
Parent 10% of µ 5% of µ 10% of µ 10% of µ 5% of µ
Selection
Tournament
Size

Algorithm GC-EA
µ0 100 100 100 200 100
λ 100 200 100 100 100
Parent 10% of µ 10% of µ 10% of µ 10% of µ 5% of µ
Selection
Tournament
Size
Survivor Truncation Truncation Truncation Truncation Truncation
Selection
Maximum µ 5000 5000 5000 5000 5000
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Rastrigin function instead uses whole arithmetic recombination and applies Gaussian

noise to the values as mutation.

The fixed parameters used in these experiments were obtained by hand tuning

each of the parameters one at a time until a better value could not be readily found,

starting with the mutation rate, then the recombination method, followed by then

mutation step size used in the Rastrigin function experiments. These parameters were

chosen not just for the good results they produced, but also because they worked well

on most if not all of the conditions that were to be varied.

Using these five test problems, the scalability of both new EAs is compared.

ONEMAX uses l = 100, 500, 1000, the SMP uses 10, 50, and 100 peaks, the D-TRAP

problem uses 100, 250 and 500 traps, ratios of 2:1, 4:1 and 6:1 clauses to variables are

used with the 3-SAT problem, and the Rastrigin function uses l = 10, 50, 100. These

tests are used to see how well these EAs perform on increasingly difficult problems.

Similarly, the sensitivity of the performance of FiScIS-EA to µ0 is compared to

the sensitivity of the performance of TEA to µ by using different values of µ0 and µ.

This is done on the SMP with 50 peaks, the D-TRAP problem with 250 traps, the

3-SAT problem with a 4:1 clauses to variables ratio and on the Rastrigin function

with n = 50. The values for µ and µ0 that will be tested are shown in Table 4.3. This

is done to show if µ0 has a more or less significant impact on the final results than

the original parameter µ.

Finally, FiScIS-EA and GC-EA will also be compared to the results obtained

from the Parameter-less GA [10] and GASAP [8] on the SMP, and with GPS-EA [20]

and GPS-EA with ELOOMS [11] on the D-TRAP problem in order to demonstrate

how they compare to other population sizing EAs.

To perform these tests, three different performance metrics will be observed. The

Mean Best Fitness (MBF) and its standard deviation (SD) are used to determine the

quality of a solution. These will both be measured as a percentage of the optimal

fitness value. The Average Evaluations until Success (AES), the measure of the

number of fitness evaluations needed to find an optimal solution, and the Success

Rate (SR), the percentage of runs resulting in an optimal solution, will only be used

in the comparisons on the SMP, because the SMP is a test problem that EAs are

capable of solving some portion of the time, while D-TRAP is rarely, if ever, solved.
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Table 4.3. Values for µ and µ0 used to test the sensitivity of µ0.
Test Problem TEA FiScIS-EA

SMP 350, 450, 550 150, 250, 350
D-TRAP 300, 400, 500 50, 100, 200
3-SAT 300, 400, 500 250, 350, 450
Rastrigin 50, 100, 150 50, 100, 150

Another set of tests will be performed using the same setup just described,

except after ten generations passing with no better fitness value being found, the

population will be reinitialized. This will allow for a better comparison with leading

algorithms, as it will be more capable of utilizing large numbers of fitness evaluations.

4.3. RESULTS

The goal behind making µ a dynamic value is to remove a user parameter with-

out causing a significant loss in performance and ideally even improve performance.

This section compares the effectiveness of FiScIS-EA, GC-EA, and TEA. In order to

statistically validate the comparison of these algorithms, 30 runs were conducted for

each EA for each test problem and ANOVA with α = .05 was used to determine the

signifcance of the differences observed.

As can be seen in Table 4.4 and Figure 4.1, TEA, FiScIS-EA and GC-EA per-

formed similarly with regards to MBF on ONEMAX. All of these EAs were capable

of finding the correct solution every time and converge at about the same number

of fitness evaluations. Figure 4.2 demonstrates how µ changes over the course of a

representative run when using FiScIS, shrinking early to speed up convergence while

expanding later to explore the search space. Figure 4.3 examines how scalable each

EA is on the ONEMAX problem, demonstrating that the increase in time required

to find a solution for a more difficult problem is similar for all of the tested EAs.

The second experiment was performed on the Spears’ Multimodal Problem and

the results from it are shown in Table 4.4 and Figure 4.4. In this experiment the

differences between FiScIS-EA and TEA were not significant for any set of param-

eters. GC-EA converged more quickly and still found a high MBF, but unlike the
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Table 4.4. Results obtained from all tested problems.
Algorithm TEA FiScIS-EA GC-EA
Problem ONEMAX
Length 100 500 1000 100 500 1000 100 500 1000
MBF 100 100 100 100 100 100 100 100 100
(SD) (0) (0) (0) (0) (0) (0) (0) (0) (0)
AES 1560 14380 86300 1733 14933 92600 1900 17533 96400
SR 100% 100% 100% 100% 100% 100% 100% 100% 100%
Problem SMP
Peaks 10 50 100 10 50 100 10 50 100
MBF 100 99.22 99.14 100 99.15 99.26 100 98.8 98.3
(SD) (0) (0.94) (0.94) (0) (1.27) (0.73) (0) (1.75) (1.53)
AES 8450 8450 8450 5750 5750 5750 2100 2080 2200
SR 100% 70% 37% 100% 60% 47% 100% 50% 20%
Problem D-TRAP
Traps 100 250 500 100 250 500 100 250 500
MBF 81.91 80.70 72.60 82.41 80.14 70.80 80.5 77.8 68.75
(SD) (1.14) (0.71) (0.51) (1.15) (0.54) (0.54) (1.14) (0.66) (0.63)
AES — — — — — — — — —
SR 0% 0% 0% 0% 0% 0% 0% 0% 0%
Problem 3-SAT
Clauses to 2:1 4:1 6:1 2:1 4:1 6:1 2:1 4:1 6:1
Variables
MBF 100 99.43 98.11 100 99.63 98.21 100 99.25 97.83
(SD) (0) (0.30) (0.27) (0) (0.29) (0.27) (0) (0.30) (0.32)
AES 7075 29200 — 4750 10750 — 2260 — —
SR 100% 10% 0% 100% 7% 0% 100% 0% 0%
Problem Rastrigin Function
Length 10 50 100 10 50 100 10 50 100
MBF 100(0) 97.27 91.70 100 97.68 92.04 99.79 99.42 98.96
(SD) (0) (0.70) (0.85) (0) (0.76) (0.69) (0.28) (0.69) (0.98)
AES 1553 — — 1443 — — 3700 — —
SR 100% 0% 0% 100% 0% 0% 60% 0% 0%

other two algorithms it has considerably more difficulty in finding the optimal solu-

tion. Figure 4.5 shows how µ changes throughout a representative run when using

FiScIS-EA. In this particular experiment, the high value of λ causes µ to rise early

and remain high. Figure 4.6 examines how scalable each algorithm is on the SMP

problem, showing that GC-EA’s performance drops off much faster than the other

two algorithms tested.
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Figure 4.1. Comparison of fitness values between three algorithms on the ONEMAX
problem using a bit string of 500 bits.

Figure 4.2. Examination of population values of FiScIS-EA on the ONEMAX problem
using a bit string of 500 bits.
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Figure 4.3. AES of the TEA, FiScIS-EA and the GC-EA for the ONEMAX problem.

Figure 4.4. Comparison of fitness values between three algorithms on the Spears’
Multimodal Problem using 50 peaks.
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Figure 4.5. Examination of population values of FiScIS-EA on the Spears’ Multimodal
Problem using 50 peaks.

Figure 4.6. MBF of the TEA, FiScIS-EA and the GC-EA for the Spears’ Multimodal
problem.
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The thrid experiment was performed on the D-TRAP problem, with results

shown in Table 4.4 and Figure 4.7. Here, altering the population size using either

FiScIS-EA or GC-EA had a significant negative impact on the performance. Fig-

ure 4.8 shows the changes in µ observed during a representative run using FiScIS-EA,

showing that the population grew quickly, then tended to fluctuate between λ and

2λ. Figure 4.9 illustrates how scalable each EA is on the D-TRAP problem. For this

problem, the fitness values degrade at a similar rate for each of the EAs.

The results for the fourth experiment are shown in Table 4.4 and Figure 4.10,

which shows the performance, and Figure 4.11, which shows the changes in µ observed

during a representative run using FiScIS-EA. In this test, FiScIS-EA converged faster,

produced a better MBF, and was more capable of finding the optimal solution than

the other two algorithms, though the improvement in MBF was insignificant except

when using a 4:1 clauses to variables ratio. The population values recorded with

FiScIS-EA show a slow climb for most of the evolution, followed by a steep climb

Figure 4.7. Comparison of fitness values between three algorithms on the D-TRAP
problem using 250 traps.
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Figure 4.8. Examination of population values of FiScIS-EA on the D-TRAP problem
using 250 traps.

Figure 4.9. MBF of the TEA, FiScIS-EA and the GC-EA for the D-TRAP problem.
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Figure 4.10. Comparison of fitness values between three algorithms on the 3-SAT
problem using a 4:1 clauses to variables ratio.

throughout the remainder of the run. Overall, the difference in performance between

FiScIS-EA and TEA was insignificant, while GC-EA performed significantly worse.

Figure 4.12 shows the MBF of all three algorithms with different clause to variable

ratios, showing that all three algorithms are equally scalable on the 3-SAT problem.

The fifth experiment was performed on the Rastrigin Function, with the results

shown in Table 4.4 and Figure 4.13. In this experiment, GC-EA achieves a signif-

icantly higher MBF than the other EAs for l = 50, 100. Figure 4.14, which shows

the changes in µ observed during a representative run of FiScIS-EA. Once again, the

behavior in the population is similar to the previous experiments. Figure 4.15 exam-

ines how scalable each algorithm is on the Rastrigin function minimization problem.

In this case, the GC-EA possesses a higher degree of scalability, as the MBF for the

GC-EA degrades by less than half of what the TEA or FiScIS-EA lose.

Table 4.5 shows the sensitivity of the performance of FiScIS-EA to µ0 compared

to the sensitivity to TEA to µ. Comparing the change in MBF shows that, although
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Figure 4.11. Examination of population values of FiScIS-EA on the 3-SAT problem
using a 4:1 clauses to variables ratio.

Figure 4.12. MBF of the TEA, FiScIS-EA and the GC-EA for the 3-SAT problem.
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Figure 4.13. Comparison of fitness values between three algorithms on the Rastrigin
function using 50 dimensions.

Figure 4.14. Examination of population values of FiScIS-EA on the Rastrigin function
using 50 dimensions.
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Figure 4.15. MBF of the TEA, FiScIS-EA and the GC-EA for the Rastrigin problem.

the differences are small, the performance of FiScIS-EA is significantly less sensitive

to µ0 than TEA to µ in every case based on ANOVA with α = 0.05. Figure 4.16 shows

the differences in the F values produced by ANOVA. Larger F values indicate a higher

probability of the performance values being significantly different, and, therefore, the

performance being more sensitive to the parameter being varied. On average, the

MBF for FiScIS-EA changes by about half of the amount that TEA changes. This

lack of sensitivity in FiScIS-EA is unsurprising. FiScIS-EA is capable of quickly

changing µ if µ0 is initially set at a value that is too high or too low, allowing FiScIS-

EA to compensate for a sub-optimal value. This lack of sensitivity is a significant

improvement for the ease of tuning µ.

Table 4.6 shows a comparison of FiScIS-EA, GC-EA, Parameter-less GA [10]

and GASAP [8] on the Spears’ Multimodal problem, using the results published in

their respective papers. As shown in Table 4.6, while both FiScIS-EA and GC-EA are

capable of finding a good result very quickly, they have difficulty finding the optimum
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Table 4.5. Sensitivity results of the performance of FiScIS-EA and TEA to µ0 and
µ, respectively.

Test Problem µ TEA µ0 FiScIS-EA

SMP 350 98.57(1.71) 150 98.98(0.71)
450 99.22(0.94) 250 99.15(1.27)
550 99.18(0.85) 350 98.99(1.23)

D-TRAP 300 80.38(0.52) 50 80.04(0.57)
400 80.70(0.72) 100 80.14(0.54)
500 80.56(0.49) 200 80.06(0.44)

3-SAT 300 99.35(0.14) 250 99.60(0.11)
400 99.43(0.30) 350 99.63(0.29)
500 99.40(0.22) 450 99.60(0.42)

Rastrigin 50 97.05(0.75) 50 97.37(0.19)
100 97.27(0.70) 100 97.68(0.76)
150 96.71(0.93) 150 97.54(0.92)

solution as often as the Parameter-less GA. This comparison is extended by including

the use of restarts for both FiScIS-EA and GC-EA. As shown here, the SR of both

FiScIS-EA and GC-EA improves dramatically with the addition of restarts.

Table 4.7 shows a comparison of FiScIS-EA, GC-EA, GPS-EA [20, 11] and the

GPS-EA with ELOOMS [11] on the D-TRAP problem, showing the results published

in [11, page 78, table 6.1]. Unlike the previous comparison, the addition of restarts

has a significant effect on the performance of both FiScIS-EA and GC-EA when

done with 25 traps, a small effect when used with 125 traps, and a negative impact

when used with 250 traps. This negative impact is likely due to the high number of

fitness evaluations required to converge, and spans of time in which no improvement

were made. Only a few restarts were possible because of the large number of fitness

evaluations used, and those restarts were initiated before the EA had converged.

4.4. DISCUSSION

Most of the results show similar performance for the three algorithms on the

five different test problems; however, in some cases one of the algorithms did perform

significantly different than the other two. Looking at the ONEMAX results reveals

that GC-EA tends to converge slowly. This is likely caused by the occasional usage of
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Figure 4.16. Sensitivity results of the performance of FiScIS-EA and TEA to µ0 and
µ, respectively.

inferior parents, caused by maintaining all individuals in the population. Even with a

scalable parent selection operator, this still allows many individuals to be selected to

mate that are of lower quality. While in some problems this is a desirable behavior, as

it assists in holding off premature convergence, for the ONEMAX problem, it merely

slows down the algorithm.

Examining the results obtained on the Spears’ Multimodal problem, an unex-

pected behavior is observed. GC-EA either arrives at a successful solution very quickly

compared to both FiScIS-EA and TEA, or it fails to arrive there at all. Unfortunately,

this behavior lowers the MBF and the SR for GC-EA on this test problem, though

the differences in MBF are not significant except when using 100 peaks. While this

trade-off is not uncommon, GC-EA exhibited the opposite behavior on the ONEMAX

problem. The only apparent reason for this difference is the difference in optimized

values for λ. Both TEA and FiScIS-EA used a high value for λ, while GC-EA used

a lower value. GC-EA performs better with lower values of λ both because it keeps

the population size smaller and more manageable for a longer period of time, as well
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Table 4.6. Comparison between FiScIS-EA, FiScIS-EA with restarts, GC-EA, GC-EA
with restarts, Parameter-less GA and GASAP on the Spears’ Multimodal Problem.

Problem Measure FiScIS FiScIS-EA GC GC-EA + Parameter GASAP
-EA + restarts -EA restarts -less GA

10 SR 100% 100% 100% 100% —– 93%
Peaks AES 5750 5750 2100 2100 —– 2060

MBF 100 100 100 100 —– 99.6
50 SR 60% 100% 50% 100% 100% 41%
Peaks AES 5750 10483 2100 12663 40142 2098

MBF 99.2 100 98.8 100 100.0 98.7
100 SR 47% 100% 20% 100% 96% 26%
Peaks AES 5750 13667 2200 17268 74654 2341

MBF 99.0 100 98.3 100 99.9 98.7

Table 4.7. Comparison between FiScIS-EA, FiScIS-EA with restarts, GC-EA, GC-
EA with restarts, GPS-EA and GPS-EA with ELOOMS on the D-TRAP problem.

Problem Measure FiScIS FiScIS-EA GC GC-EA + GPS GPS-EA w/
-EA + restarts -EA restarts -EA ELOOMS

25 SR 0% 0% 0% 0% 0% 0%
Traps MBF 84.97 88.17 82.80 84.07 90.33 95.07
125 SR 0% 0% 0% 0% 0% 0%
Traps MBF 82.27 82.97 78.08 78.47 83.55 86.25
250 SR 0% 0% 0% 0% 0% 0%
Traps MBF 80.14 77.09 77.80 77.37 82.56 84.00

as improving its ability to converge upon a solution. In this case, while a smaller λ

performed better than a larger one, the smaller value caused problems in finding the

optimal peak.

The results obtained from the D-TRAP problem show that FiScIS-EA is signifi-

cantly faster at converging than TEA, and generally finds solutions with similar MBF;

however, on more difficult problems the differences between TEA and FiScIS-EA are

significant. This is likely because of FiScIS-EA’s ability to quickly remove undesir-

able individuals from the population, thus increasing convergence speed. However,

even when coupled with a high λ to help maintain genetic diversity, TEA is more
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capable of solving difficult instances of the D-TRAP problem. On the problems with

500 traps, the EAs all terminated due to the maximum number of fitness evaluations

being reached, rather than from convergence; as such, they failed to achieve the ex-

pected quality of results. For D-TRAP, it is expected that at convergence, all traps

should be comprised of homogeneous bits. Despite the fact that the evolution is tilted

away from finding the optimal solution, about 1/16 of the randomly initialized traps

should start with the optimal pattern, and a small portion should also be evolved

during the run. Because of this, the expected outcome is at least 15
16
· 0.75 + 1

16
= 77%

of the maximum MBF.

The results from the 3-SAT tests showed that GC-EA produced results of sig-

nificantly lower quality than either TEA or FiScIS-EA. Despite its ability to maintain

genetic diversity throughout the experiment, GC-EA’s solution quality tends to re-

main poor, even once the termination condition is met. This is likely due to a lack of

need to preserve tremendous amounts of genetic information in binary problems. In

this case, GC-EA would likely benefit from keeping fewer individuals while exploring

more with a higher λ, similar to the parameters used for this problem with TEA.

Comparing TEA with FiScIS-EA only shows a significant difference when using a 4:1

ratio, where FiScIS performs significantly better. There is no obvious explanation for

this, and it might be a statistical anomaly.

Despite an unimpressive performance on the other four test problems, the GC-

EA excelled on the Rastrigin function. On this test problem, it produced significantly

better quality solutions using less time than either of the other algorithms. For

this problem, the ability to maintain genetic information proves extremely useful as

the algorithm is very capable of finding high-quality solutions very quickly. This

behavior is somewhat expected from the GC-EA on real-valued problems, as the

number of different possible solutions is much larger than on a binary problem. As

such, maintaining genetic information is much more useful on real-valued problems

like the Rastrigin function.

Figures 4.2, 4.5, 4.8, 4.11 and 4.14 demonstrate some unexpected behaviors of

FiScIS-EA. The expected results were a high initial value for the population followed

by a dramatic drop after the first generation to allow for more rapid evolution. The

results show something considerably different, as only on the ONEMAX problem does
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the population behave as expected. The other problems start with a moderate value

for µ, but then it increases rapidly to a point where it then fluctuates up and down.

For these problems µ tends to fluctuate between λ and 2λ, suggesting that FiScIS-

EA’s value of µ is influenced more by λ than anything else. While, in a sense, this

does reduce the pressure on selecting good values for µ0, it also places more pressure

on selecting a good value for λ, which causes a similar need for manual tuning. To

further demonstrate FiScIS-EA’s lack of sensitivity to changes in µ0, Table 4.5 shows

that the MBF of FiScIS-EA is significantly less sensitive to changes in µ0 than the

MBF of TEA is sensitive to changes in µ.

Table 4.6 and Table 4.7 show that the addition of restarts to EAs is not always

beneficial. While the SR of the SMP tests was improved dramatically, the MBF

observed on the D-TRAP problem was not. This makes some sense when examining

the data obtained from those test problems without the usage of restarts. The optimal

solution for the SMP was always within two standard deviations of the MBF. This,

combined with the high convergence speed allowed the algorithms to utilize restarts

to find the optimal solution every time. The D-TRAP problem, however, lacks both

of those qualities. The optimal solution was never close to the MBF, and convergence

speed for the D-TRAP problem is usually slow. As such, the MBF improved by a

small amount, only reaching one to two standard deviations higher than before, at

best.

Also worth noting here is that, even though they required fewer fitness eval-

uations to tune than TEA, both FiScIS-EA and GC-EA still required a significant

amount of extra evaluations when tuned as stated in Section 4.2. Because of the

large number of fitness evaluations used, possible improvements in this area could be

obtained by combining either FiScIS-EA or GC-EA with a powerful parameter tuning

method, such as REVAC [17].
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5. CONCLUSIONS AND FUTURE WORK

EAs are powerful algorithms capable of solving difficult problems. However, this

power comes with a considerable investment in time, not just in the tuning of the

algorithm, but in learning how to properly tune an algorithm as well. While many

different methods of parameter control have been developed, only a few methods

have been created for controlling the population size, and all these methods have

significant drawbacks. This thesis examined optimized value sequences for µ, explored

controlling µ, introduced two novel methods for controlling µ, and compared their

performance on a diverse set of test problems.

The examination of optimal values for µ was handled by a meta-EA and showed

not only the value of a dynamic population, but also a considerable amount of insight

as to what properties an optimal control scheme for µ requires. In particular, the

higher initial value of µ warrants further exploration, as this was present in all of the

optimal population size sequences.

The first novel method introduced was FiScIS-EA which works by replacing

standard survivor selection with a random chance applied to each individual to survive

to the next generation. The chance of survival for a given individual is simply that

individual’s fitness when all of the fitness values in the current population are scaled

between zero and one. FiScIS-EA proved to be very powerful, but also showed some

draw backs. While generally it obtained good results, it failed to remove µ as a

parameter, instead replacing it with µ0, to which performance is less sensitive, and

increased the pressure placed on picking a good value for λ. Despite the original

idea that went into this algorithm’s design, it was generally found to have higher

values for µ than µ0 throughout most of the evolution, as opposed to the high initial

value followed my a sharp drop that was observed in the optimal values found by the

meta-EA.

The second novel method introduced was GC-EA. This method operates under

the theory that old individuals should not be discarded unless it is absolutely neces-

sary. To this end, it uses a small initial population and a high maximum population.

At each generation, individuals are only removed from the population if the maxi-
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mum population has been exceeded. In this manner, genetic information is preserved

so that those genes can be used in future generations. GC-EA generally performed

rather poorly; however, that might be more caused by a selection of test problems that

are mostly outside its area of specialty. Since it only performed well on the Rastrigin

function, it is reasonable to assume that it functions better on problems that share

similarly large search spaces, including other real-valued problems. This also provides

some amount of insight on how much genetic diversity must be maintained on various

test problems. It would make sense that more diversity maintenance would be needed

for a real-valued problem, as they generally have a much larger search space than a

binary problem. As such, GC-EA performs significantly better on the Rastrigin func-

tion than the other algorithms. This is likely due to its better ability to maintain

diversity.

While the usefulness of a dynamic population has been demonstrated through

the use of a meta-EA, the methods for implementing an algorithm with a constantly

optimal population size is still elusive. While both FiScIS-EA and GC-EA provide

methods for altering the population size during the execution of the EA, neither are

capable of maintaining an optimal population size. As such, more examination of

what makes a population scheme perform well or poorly is required before significant

advances can be made.

While the usefulness of both FiScIS-EA and GC-EA has already been shown

to a limited extent, additional test problems are needed to clarify the types of prob-

lems that each algorithm excels on. In particular, GC-EA needs to be tested on

additional real-valued test problems to substantiate the hypothesis that it will out-

perform FiScIS-EA on such problems because of its ability to deal with larger search

spaces. Additionally, employing a meta-EA to further explore the optimal values for

µ on more test problems is expected to provide more insight into what values for µ

are most beneficial at various points in the evolution. These insights could then in

turn be used to improve the performance of existing algorithms, or to create entirely

new algorithms.

In addition to removing µ as a parameter, removing other parameters simul-

taneously may dramatically improve the performance of an EA. Since the quality of

a parameter is based on what values for other parameters are being used as well as
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its own value, altering only a single parameter has limits to what it can achieve. By

allowing alterations to more parameters at the same time, more useful combinations

become possible, potentially reaching past what limits are currently present. For in-

stance, combining dynamic population sizing with dynamic offspring sizing [18] would

allow for more extensive control of the ratio between exploration and exploitation.

Also, altering selection operators can allow for a wider range of acceptable values for

population size. For example, selective pressure needs to be at different values for

different population sizes.



www.manaraa.com

41

BIBLIOGRAPHY

[1] J. Arabas, Z. Michalewicz, and J. Mulawka. GAVaPS-a genetic algorithm with
varying population size. In Proceedings of the First IEEE Conference on Evolu-
tionary Computation, pages 73–78, 1994.

[2] T. Back. Self adaptation in genetic algorithms. In Towards a Practice of Au-
tonomous Systems: Proceedings of the 1st European Conference on Artificial Life,
pages 263–271, 1992.

[3] T. Back. The interaction of mutation rate, selection and self-adaptation within
a genetic algorithm. In Proceedings of the 2nd Conference on Parallel Problem
Solving from Nature, pages 85–94, 1992.

[4] T. Back. Optimal mutation rates in genetic search. In Proceedings of the 5th
International Conference on Genetic Algorithms, pages 2–8, 1993.

[5] T. Back, A. Eiben, and N. A. L. van der Vaart. An empirical study on GAs with-
out parameters. In Proceedings of PPSN VI: the Sixth International Conference
of Parallel Problem Solving form Nature, pages 315–324, 2000.

[6] J. Clune, S. Goings, B. Punch, and E. Goodman. Investigations in meta-GAs:
panaceas or pipe dreams? In Proceedings of GECCO 2005 Workshops on Genetic
and Evolutionary Computation, pages 235–241, 2005.

[7] J. E. Cook and D. R. Tauritz. An Exploration into Dynamic Population Siz-
ing. In Proceedings of GECCO 2010: the Genetic and Evolutionary Computation
Conference, 2010.

[8] A. Eiben, M. Schut, and A. deWilde. Is self-adaptation of selection pressure
and population size possible? - a case study. In Proceedings of PPSN IX: the
Ninth International Conference on Parallel Problem Solving from Nature, pages
900–909, 2006.

[9] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer,
2007.

[10] G. Harik and F. Lobo. A parameter-less genetic algorithm. In Proceedings of
GECCO 1999: the Genetic and Evolutionary Computation Conference, volume 1,
pages 258–265, 1999.

[11] E. Holdener. The Art of Parameterless Evolutionary Algorithms. PhD thesis,
Missouri University of Science and Technology, 2008.

[12] R. M. J. Hesser. Towards an optimal mutation probability for genetic algorithms.
In Proceedings of the First Conference on Parallel Problem Solving from Nature,
pages 23–32, 1991.



www.manaraa.com

42

[13] T. F. J.E. Smith. Recombination strategy adaptation via evolution of gene link-
age. In Proceedings of the 1996 IEEE Conference on Evolutionary Computation,
pages 826–831, 1996.

[14] T. F. J.E. Smith. Self adaptation of mutation rates in a steady state genetic
algorithm. In Proceedings of the 1996 IEEE Conference on Evolutionary Com-
putation, pages 318–323, 1996.

[15] K. A. D. Jong, M. A. Potter, and W. M. Spears. Using problem generators to
explore the effects of epistasis. In Proceedings of the International Conference
on Genetic Algorithms, pages 338–345, 1997.

[16] F. G. Lobo and C. F. Lima. Revisiting evolutionary algorithms with On-the-fly
Population Size Adjustment. In Proceedings of GECCO 2006: the 8th annual
conference on Genetic and Evolutionary Computation, pages 1241–1248, 2006.
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